Simulations of beams in plasmas for Heavy Ion Fusion

J.-L. Vay¹

Contributions from R. Cohen², A. Friedman², D. Grote², I. Kaganovich³, A. Sefkow⁴, P. Seidl¹, W. Sharp², D. Welch⁵

¹Lawrence Berkeley National Laboratory, CA, USA ²Lawrence Livermore National Laboratory, CA, USA ³Princeton Plasma Physics Laboratory, NJ, USA ⁴Sandia National Laboratory, NM, USA ⁵Voss Scientific, NM, USA

> 19th International Symposium on Heavy Ion Inertial Fusion Berkeley, CA, USA – August 12-17, 2012

Work performed for U.S. D.O.E. by U.C. LBNL under contract DE-AC03-76F00098 and LLNL under contract DE-AC52-07NA27344.

The Heavy Ion Inertial Fusion (HIF) program is studying the science of ion-heated matter, as well as drivers & targets for inertial fusion energy

NDCX-II is HIF's new platform for studies of

- -space-chargedominated beams
- -Warm Dense Matter physics
- -beam-target energy coupling

Simulation goal – integrated self-consistent predictive capability

including:

- beam(s) generation, acceleration, focusing and compression along accelerator,
- loss of particles at walls, interaction with desorbed gas and electrons,
- neutralization from plasma in chamber,
- target physics and diagnostics.

=> Need self-consistent multiphysics computing.

- Beam transport in HIF chamber
- Physics of beams in plasmas
- Neutralized Drift Compression (NTX, NDCX, NDCX-II)
- Electron cloud effects (HCX)
- Formation of high charge states HIF beams (Future HIF driver design)

Codes: BIC (Langdon et al), BPIC (Vay), BTRAC (Barboza), LSP (Voss S.), Warp (Grote et al) are based on the Particle-In-Cell (PIC) method.

- + filtering (charge, currents and/or potential, fields).
- + absorption/emission (injection, loss at walls, secondary emission, ionization, etc),
- + external forces (accelerator lattice elements),

- Beam transport in HIF chamber
- Physics of beams in plasmas
- Neutralized Drift Compression (NTX, NDCX, NDCX-II)
- Electron cloud effects (HCX)
- Formation of high charge states HIF beams (Future HIF driver design)

Cut-away view shows beam and target injection paths for an example thick-liquid chamber (Hylife II design)

Simulation of ballistic transport through FLIBE

Transverse compression leads to raising electron temperature, imperfect neutralization and emittance growth.

Uncertainties on gas ionization & beam stripping cross sections constrain the background Flibe to low densities.

A preformed plasma channel provides better neutralization

Callahan et al, Fus. Eng. Des. 32 (1996)

LSP (3D) - 2 kA, 4 GeV, Bi+

Sharp et al, Nucl. Fusion 44 (2004)

Benchmarking performed against Final-Focus Scaled Experiment, studying effect of neutralizing electrons (from a hot filament) on focal spot size.

400μA, 160 keV, Cs+

Integrated simulation of final focus design for NDC with discharge transport for HIF driver

Plasma response (yellow and blue regions) modeled with a scalar conductivity in LSP

Welch et al, HIF 2004

- Beam transport in HIF chamber
- Physics of beams in plasmas
- Neutralized Drift Compression (NTX, NDCX, NDCX-II)
- Electron cloud effects (HCX)
- Formation of high charge states HIF beams (Future HIF driver design)

Simulations also help us understand beam flows in plasmas

Charge neutralization depends on pulse duration and plasma frequency.

Criterion for near complete neutralization: $\omega_p \tau_b/2\pi >> 1$.

Kaganovich et al, Phys. Plasmas 11 (2004)

Reproduced with Warp in 2D and extended to 3D

Warp's mesh refinement enabled 3D simulations (speedup x10 in 3D).

Solenoidal magnetic field influences the waves in plasma

Plots of electron charge density contours in (x,y) space, calculated in 2D slab geometry using the LSP code with parameters:

Plasma: $n_p = 10^{11} \text{cm}^{-3}$; Beam: $V_b = 0.2c$, 48.0A, r_b =2.85cm and pulse duration τ_b =4.75 ns.

A solenoidal field of 1014 G corresponds to $\omega_{ce} = \omega_{pe}$.

Kaganovich et al, Phys. Plasmas 17 (2010) and this symposium.

Whistler

- Beam transport in HIF chamber
- Physics of beams in plasmas
- Neutralized Drift Compression (NTX, NDCX, NDCX-II)
- Electron cloud effects (HCX)
- Formation of high charge states HIF beams (Future HIF driver design)

LSP was also benchmarked against plasma neutralization experiments on NTX

¹Roy et al, HIF 2004; ²Welch et al, HIF 2004

Integrated source-to-target simulation of NDCX with Warp

Simulation carried out in two stages

- From source to IBM beam only so use large Δt
- From IBM to target with plasma, so constrained by $\omega_{\rm pe}\Delta t < 1$

PIC simulations of the injection of the neutralizing plasma

Sefkow et al, Phys. Plasmas 16 (2009)

Grote et al, ICAP (2009)

- Beam transport in HIF chamber
- Physics of beams in plasmas
- Neutralized Drift Compression (NTX, NDCX, NDCX-II)
- Electron cloud effects (HCX)
- Formation of high charge states HIF beams (Future HIF driver design)

Modeling of the interaction of beam with electrons in a quadrupole

0V

High Current Experiment (HCX) 0V/+9kV **0V**

Oscillation

~6 MHz signal in (C) in simulation AND experiment

Vay et al, HIF 2006

Study of oscillations pending: Kelvin-Helmholtz, two-stream, other?

Effects of electrons on beam in good qualitative agreement

- Beam transport in HIF chamber
- Physics of beams in plasmas
- Neutralized Drift Compression (NTX, NDCX, NDCX-II)
- Electron cloud effects (HCX)
- Formation of high charge states HIF beams (Future HIF driver design)

Formation of high charge states HIF beams : challenges

- emittance growth due to space charge
- separation of charge states
- particle loss to walls or in dumps
- gas load, heat load on stripping target
- effect of secondary e- on the ion beam
- longitudinal energy spread (straggling)
- Implementation in a multiple beam linac

Seidl et al, PAC 2011

Example: 500 MeV, U⁺ \rightarrow U¹²⁺ (2.1 MeV/amu), β = 6.7 x 10⁻², I_o = 11 A, ϵ_{un} = 10 mm•mrad, $\epsilon_{norm} \approx \epsilon_{un}$ • β = 0.67 mm•mrad.

Example: 500 MeV, U⁺ \rightarrow U¹²⁺ (2.1 MeV/amu), β = 6.7 x 10⁻², I_o = 11 A, ϵ_{un} = 10 mm•mrad, $\epsilon_{norm} \approx \epsilon_{un}$ • β = 0.67 mm•mrad.

Summary

- The study of the propagation of beam(s) in plasma (neutral and non-neutral) is an important component of the HIFS portfolio:
 - front end: high-charge state beams
 - accelerator: electron cloud effects
 - final focus and chamber propagation: neutralized drift compression, discharge transport, etc

 Several codes and methods have been used and developed by the HIFS program

